On the Analytic Form of the Discrete Kramer Sampling Theorem
نویسندگان
چکیده
The classical Kramer sampling theorem is, in the subject of self-adjoint boundary value problems, one of the richest sources to obtain sampling expansions. It has become very fruitful in connection with discrete Sturm-Liouville problems. In this paper, a discrete version of the analytic Kramer sampling theorem is proved. Orthogonal polynomials arising from indeterminate Hamburger moment problems as well as polynomials of the second kind associated with them provide examples of Kramer analytic kernels. 2000 Mathematics Subject Classification. Primary 94A20, 44A60.
منابع مشابه
Central Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملA FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کامل. SP ] 2 5 Ja n 20 07 Applications of M . G . Krein ’ s Theory of Regular Symmetric Operators to Sampling Theory ∗ †
The classical Kramer sampling theorem establishes general conditions that allow the reconstruction of functions by mean of orthogonal sampling formulae. One major task in sampling theory is to find concrete, non trivial realizations of this theorem. In this paper we provide a new approach to this subject on the basis of the M. G. Krein’s theory of representation of simple regular symmetric oper...
متن کاملA new switching strategy for exponential stabilization of uncertain discrete-time switched linear systems in guaranteed cost control problem
Uncertain switched linear systems are known as an important class of control systems. Performance of these systems is affected by uncertainties and its stabilization is a main concern of recent studies. Existing work on stabilization of these systems only provides asymptotical stabilization via designing switching strategy and state-feedback controller. In this paper, a new switching strate...
متن کامل